Friday, March 03, 2023
Organoid intelligence
A new take on Ai, is "Wet" AI using organoids and other sythetic biology methods. "We anticipate OI-based biocomputing systems to allow faster decision-making, continuous learning during tasks, and greater energy and data efficiency. Furthermore, the development of “intelligence-in-a-dish” could help elucidate the pathophysiology of devastating developmental and degenerative diseases (such as dementia), potentially aiding the identification of novel therapeutic approaches to address major global unmet needs." Full article @ Frontiers in Science. Thank you Xuanchi Li for the article.
Labels: #AI, #Brain, #organoids, #SyntheticBiology
Thursday, March 02, 2023
Lane formation in Crowd Dynamics
"Laning is a paradigmatic example of spontaneous organization in active two-component flows that has been observed in diverse contexts, including pedestrian traffic, driven colloids, complex plasmas, and molecular transport. We introduce a kinetic theory that elucidates the physical origins of laning and quantifies the propensity for lane nucleation in a given physical system. Our theory is valid in the low-density regime, and it makes different predictions about situations in which lanes may form that are not parallel with the direction of flow. We report on experiments with human crowds that verify two notable consequences of this phenomenon: tilting lanes under broken chiral symmetry and lane nucleation along elliptic, parabolic, and hyperbolic curves in the presence of sources or sinks." Full article @ Science.
Labels: #Crowddynamics, #Crowds, #self-organization